
Erosion at the Fairfield Osborn Preserve

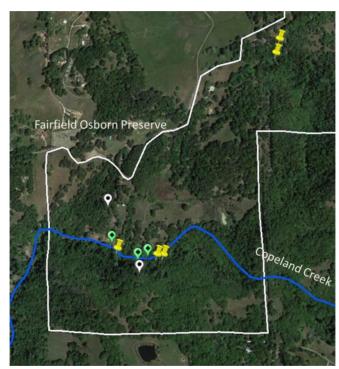
Jose Ochoa, Lauren Cleveland, Emily Vargas, and Luis Luna

Hypothesis

- Research Question: How is the amount of soil erosion of the stream bank changing over time?
- Hypothesis 1: Over the past year, we expect more eroded soil around the stream banks.
- Hypothesis 2: We expect more erosion to occur in areas where there is less vegetation.

Background I

- Erosion is harmful to the Osborn
 Preserve
- Sediment transportation can cause harm to the local wildlife
- Plants have extensive root systems that can help grab onto soil and keep the soil clumped together (Finio, B., 2018)


http://web.sonoma.edu/cei/images/osborn/osbornbanner3.jpg

https://www.sciencebuddies.org/science-fair-projects/project-ideas/EnvEng_p037/environmental-engineering/can-plants-stop-soil-erosion

Background II

- Michelle Goman has been researching erosion at the Fairfield Osborn Preserve (Copeland Creek) from 2013-2018
- We can reference her data with ours and compare how the erosion has progressed over time using erosion pins
- Erosion pins are metal rods with bright colored tops

http://web.sonoma.edu/waters/projects/sediment/se diment erosion monitoring.html

Methods I

- We measured the change in amount of erosion in areas close to the creek; using erosion pins put in by Michelle Goman
- We measured at the same spots as the previous study:
 - 9 out 15 pins in total (lower/upper cross section-North)
- Noticed differences in plant life near erosion pins (low to high)

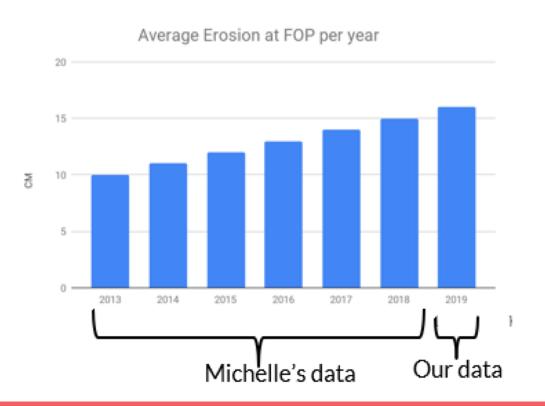
Erosion Pin



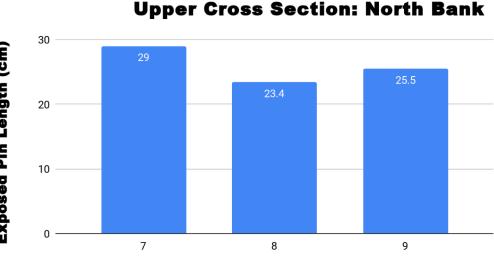
https://www.mwmo.org/projects/riverfront-regional-park/

Methods II

- Equipment needed: 2 Tape measures
- Measurements in cm
- GPS IPhone Application (wasn't precise, didn't work)
- Camera (IPhone)

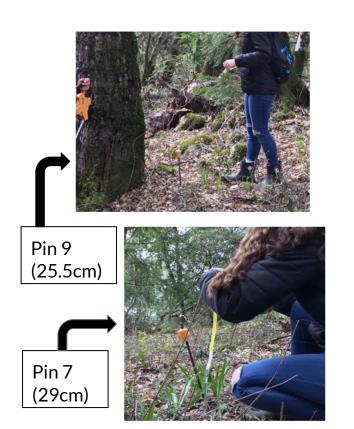

Maps-Logo-Navigation-1797882

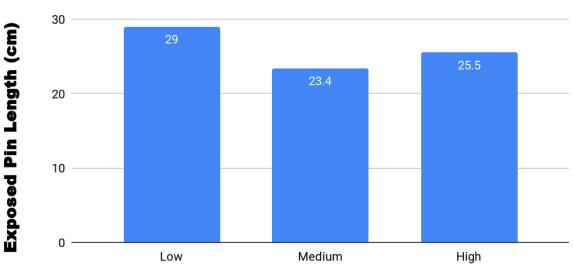
Map of Fairfield Osborn Preserve


Original Proposal Graph

Upper Cross Section: North Bank Data

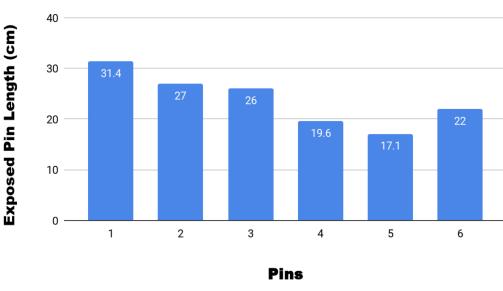
Upper Cross Section: North Bank	
Pin	Measurement (cm)
7	29 🥖
8	23.4
9	25.5 🥖 🥖 🏈



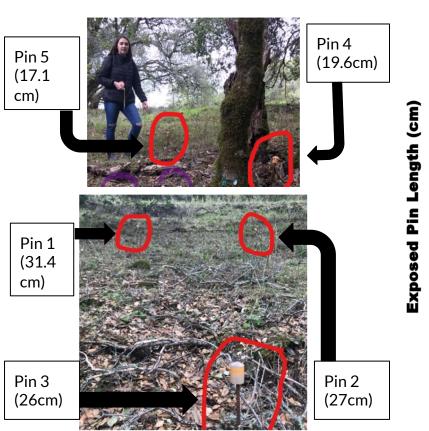

Pins

Upper Cross Section: North Bank Data

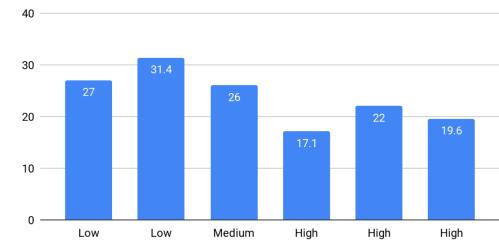
Amount of Erosion vs. Amount of Vegetation



Amount of Vegetation


Lower Cross Section: North Bank Data

Lower Cross Section: North Bank	
Pin	Measurement (cm)
1	31.4 🥖
2	27 🥖
3	26 🥖 💋
4	19.6 🥖 🥖 🥖
5	17.1 🥖 💋 🥖
6	22 🥖 🥖 🥖


Lower Cross Section: North Bank

Lower Cross Section: North Bank Data

Amount of Erosion vs. Amount of Vegetation

Amount of Vegetation

Conclusion I

- Graph of the Upper Cross Section: North Bank shows noticeable erosion
 - average amount of erosion is about 25.9cm
- Graph of the Lower Cross Section: North Bank had quite a bit of noticeable erosion
 - average amount of erosion is about 23.9cm
- From the averages of all the data, we see there is more erosion in the Upper than the Lower

Conclusion II

- Can't conclude for 100% certainty that there is more erosion on the Upper than the Lower because of sample sizes (pin #, year)
- Unable to answer hypothesis 1
- Also unable to decipher which pins are which, can't compare the previous data collected
- Pins with trees/vegetation close by had slightly less erosion
- Both areas had a good amount of vegetation, but the Upper Section had less

Significance

Erosion has multiple causes:

- Drought- lack of moisture in the soil, recession of roots/vegetation
- Heavy Rain- puts large amount of forces on the soil
- Other forms of erosion are not present on the osborn preserve (wind, tectonic plate movement, tillage)

https://www.nationalgeographic.org/encyclopedia/drought/

References

Lawler, D. M. (1993), The measurement of river bank erosion and lateral channel change: A review. Earth Surf. Process. Landforms, 18: 777-821. doi:10.1002/esp.3290180905

Finio, B. (2018, December 1). *Can Plants Stop Soil Erosion*? Retrieved from https://www.sciencebuddies.org/science-fair-projects/project-ideas/EnvEng_p037/environmental-engineering/can-plants-stop-soil-erosion